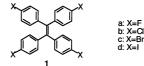
SHORT PAPER

Supramolecular complex of C₆₀ with tetrakis(*p*-iodophenyl)ethylene[†] Koichi Tanaka^{*,a} and Mino R. Caira^{*,b}


^aDepartment of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan ^bDepartment of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

When complexed with tetrakis(p-halophenyl)ethylene, the C₆₀ molecule arranges to form chiral inclusion crystals.

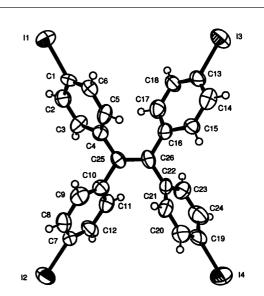
Keywords: tetrakis (p-halophenyl) ethylene, c₆₀, inclusion complex

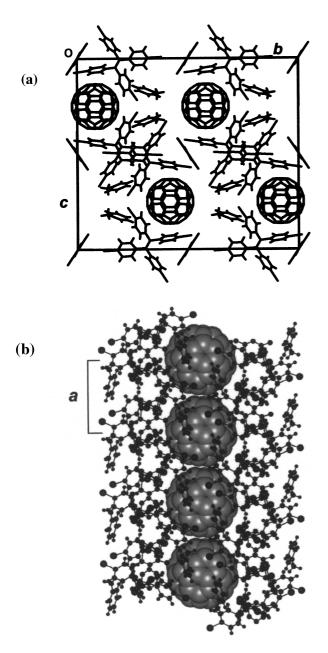
The supramolecular organisation of C_{60} by inclusion crystallisation with host compounds has been of considerable interest in recent years due to their potential application to new materials with novel functions.¹ The linear [2+2] polymerisation of C_{60} molecules in the supramolecular complex has also been reported.² Here, we report the synthesis and crystal structure of the new C_{60} molecular complex with tetrakis(*p*iodophenyl)ethylene **1d** in which C_{60} molecules are arranged in linear columns.

We recently reported that tetrakis(*p*-halophenyl)ethylenes **1a–1d** form stable inclusion complexes with various organic molecules through halogen–halogen and halogen– π interactions. The achiral host molecule **1** forms chiral crystals with achiral guest molecules in the solid state.³ When complexed with tetrakis(*p*-halophenyl)ethylenes **1a–1d**, C₆₀ selectively forms 1:2 inclusion crystals with **1d**. For example, when a solution of C₆₀ (20 mg) and tetrakis(*p*-iodophenyl)ethylene **1d** (46 mg) in toluene (10 ml) was kept at room temperature for several days, an inclusion complex of C₆₀, **1d** a and toluene in a 1:2:3 ratio was obtained as black prisms (23 mg). Fullerene C₇₀ does not form a crystalline complex with tetrakis(*p*halophenyl)ethylenes **1a–1d**.

The structure of the title complex, crystallising in the chiral space group C222₁, was determined by single crystal X-ray diffraction. Figure 1 shows the conformation of the host molecule. Steric strain is evident from deviations from 0 or 180° of the torsion angles involving the ethylenic bond C25–C26. Thus, the torsion angles C4–C25–C26–C16 and C10–C25–C26–C22 are -10(2) and $-12(2)^{\circ}$ respectively, indicating that the pivot atoms C4 and C22 of the phenyl groups lie above the mean plane including the double bond and its four bonded atoms, while the pivot atoms C10 and C16 lie below this plane. Inspection of the torsion angles describing the orientations of the iodophenyl substituents shows that the host molecule adopts approximately 222 symmetry.

The crystal structure is based on linear strands of guest fullerene molecules isolated from one another by intervening host and solvent molecules. In the [100] projection of the crystal structure shown in Fig. 2(a), linear arrays of guest C_{60} molecules are viewed along their stacking direction, the isolated arrays packing in a distorted hexagonal arrangement.




Fig.1 Conformation of the host molecule 1d. The C-I distance range is 2.09(2)-2.11(2)Å and the ethylenic bond length C25-C26 is 1.38(2)Å. Atoms are drawn with 50% probability ellipsoids.

Individual nearest neighbour C_{60} strands are separated by distances ranging from 15.6 to 18.4Å measured in the *bc*-plane. A single, representative strand of C₆₀ molecules with surrounding host and solvent molecules is shown in Fig.2(b) in the [010] projection. The distance between the centres of two successive C₆₀ molecules within a strand coincides with the crystal a axis (9.9993(2)Å at 297K). This distance is only 1% longer than that determined at 173K in the complex between C_{60} and *p*-bromocalix[4]arene propyl ether¹ which contains analogous isolated one-dimensional fullerene strands. In the latter complex, however, the calixarene molecules surrounding these strands pack with their dipole moments aligned unidirectionally. This polar host arrangement evidently induces an opposing dipole in the C60 molecules, which is responsible for their close spacing within a strand.¹ The interesting and contrasting feature of the present complex is that analogous guest strands occur in an environment of non-polar host 1d molecules and toluene molecules.

Figure 2(a) shows that the packing of the host and solvent molecules provides each C_{60} strand with a non-uniform environment. Each of two host molecules related by the C₂-axis parallel to *b* at $z = \frac{1}{4}$ presents a pair of iodophenyl rings to the C₆₀ column. One iodophenyl ring of a pair faces one C₆₀ molecule while the other ring faces a second C₆₀ molecule translated one unit cell along *a*. The remaining neighbours of the column include both ordered and disordered toluene molecules and iodine atoms from adjacent host molecules. Due to the limited conformational flexibility of the host molecule, the

^{*} To receive any correspondence. E-mail: tanaka@en3.ehime-u.ac.jp † This is a Short Paper, there is therefore no corresponding material in

J Chem. Research (M).

Fig.2 (a) Packing diagram viewed along [100], parallel to the linear columns of C_{60} molecules, and (b) a single column of C_{60} molecules with surrounding host and solvent molecules viewed approximately parallel to [010].

iodophenyl rings are not involved in strong π - π interactions with the fullerene molecules. Accurate interaction distances cannot be quoted due to guest disorder, but using the idealised C₆₀ co-ordinates, host-guest aromatic ring centroid-centroid distances in the range 4.2–4.6Å were found. This differs significantly from the host-guest interaction occurring in the C₆₀-triptycene inclusion complex¹ in which the concave faces of two host molecules engage in very efficient 'capping' of a single C₆₀ molecule. The present structure is further stabilised by iodine– π interactions, the strongest of these involving the solvent molecules. Host atom I1 is at 3.73 Å from the centroid of the ordered toluene molecule. The disordered solvent molecule is approached by two diad-related I3 atoms (one from either side) with I-centroid distance 4.00 Å.

In summary, non-polar host **1d** molecules form chiral inclusion crystals with C_{60} molecules together with toluene molecules by $\pi - \pi$ and iodine $-\pi$ interactions in which C_{60} molecules are arranged in linear columns.

Experimental

Preparation of inclusion crystal: When a solution of C_{60} (20 mg) and tetrakis(*p*-iodophenyl)ethylene **1d** (46 mg) in toluene (10 ml) was kept at room temperature for several days, an inclusion complex of C_{60} , **1d** and toluene in 1:2:3 ratio was obtained as black prisms (23 mg). Anal. Calc. For $C_{133}H_{56}I_8$: C, 59.85; H, 2.11. Found: C, 59.92; H, 2.24.

Crystal data for C_{60} ·2($C_{26}H_{16}I_4$)·3(C_7H_8), M = 2669.98, Calcd.: %C 59.85, %H 2.12, Found: %C 59.92, %H 2.24, black prism, orthorhombic, space group C222₁ (no.20), a = 9.9993(2), b =33.6614(7), c = 29.3134(7)Å, Z = 4, V = 9866.6(4)Å³, $D_c = 1.797$ g cm⁻³, $D_m = 1.79(1)$ g/cm³ (by flotation in CH₂I₂/PhCl mixture), $\mu =$ 2.57 mm^-1, Nonius Kappa CCD diffractometer, Mo–K α radiation, λ = 0.71073 Å, T = 297(2)K, θ_{max} = 24.7°, 16095 reflections collected (98.0% completeness), 8016 unique reflections ($R_{int} = 0.043$). The structure was solved by direct methods (SHELXS97) and expanded by difference electron density syntheses. The asymmetric unit comprises one host molecule 1d, half of a C_{60} molecule and 1.5 toluene molecules. The fullerene was located on the C2-axis parallel to b (Wyckoff position (b)) and was severely disordered. It was modelled by an idealised half-molecule placed on the C2-axis. Optimization of its orientation was attempted but the refinement was fairly insensitive to this process and significant difference electron density peaks remained. An ordered toluene molecule was located in the general eightfold position. A second toluene molecule was rotationally disordered on the C_2 -axis parallel to *a* (Wyckoff position (a)). Refinement on F² with SHELXL97 involved thermally anisotropic host nonhydrogen atoms and isotropic refinement of those of the guest and solvent molecules. Hydrogen atoms were added to the host and the ordered solvent molecule in idealized positions in a riding model. No H atoms were added to the disordered toluene molecule. Refinement converged at $R_1 = 0.081$, $wR_2 = 0.250$, S = 1.015 for 325 parameters. The correct absolute structure was indicated by the Flack parameter, $\chi = -0.03(7)$. The maximum residual electron density of 1.02 eÅ⁻³ was found on the surface of the disordered fullerene molecule.

KT acknowledges the financial support from The Ministry of Education, Science and Culture of Japan. MRC thanks the University of Cape Town and the National Research Foundation (Pretoria) for financial assistance and Dr L.J. Barbour for useful discussion.

Received 18 April 2002; accepted 25 June 2002 Paper 02/1351

References

- 1 A. Izuoka, T. Tachikawa, T. Sugawara, Y. Suzuki, M. Konno, Y. Saito and H. Shinohara, Chem. Commun., 1992, 1472; J.D. Crane, P.B. Hitchcock, H.W. Kroto, R. Taylor and D.R.M. Walton, Chem. Commun., 1992, 1764; D.M. Eichhorn, S. Yang, W. Jarrell, T.F. Baumann, L.S. Beall, A.J.P. White, D.J. Williams, A.G.M. Barrett and B.M. Hoffman, Chem. Commun., 1995, 1703; D.V. Konarev, E.F. Valeev, Y.L. Slovokhotov, Y.M. Shul'ga, R.N. Lyubovskaya, J. Chem. Res. (S), 1997, 442; L.J. Barbour, G.W. Orr, J.L. Atwood, Chem. Commun., 1997, 1439; K.N. Rose, L.J. Barbour, G.W. Orr, J.L. Atwood, Chem. Commun., 1998, 407; L.J. Barbour, G.W. Orr, J.L. Atwood, Chem. Commun., 1998, 1901; P.C. Andrews, J.L. Atwood, L.J. Barbour, P.J. Nichols, C.L. Raston, Chem. Eur. J. 1998, 4, 1384; I.E. Grey, M.J. Hardie, T.J. Ness, C.L. Raston, Chem. Commun., 1999, 1139; P.D. Croucher, P.J. Nichols, C.L. Raston, J. Chem. Soc., Dalton Trans. 1999, 2927; E.M. Veen, P.M. Postman, H.T. Jonkman, A.L. Spek, B.L. Feringa, Chem. Commun., 1999, 1709; B. Narymbetov, H. Kobayashi, M. Tokumoto, A. Omerzu, D. Mihailovic, Chem. Commun., 1999, 1511; J.L. Atwood, L.J. Barbour, C.L. Raston, Crystal Growth Design, 2002, 2, 3.
- 2 Y. Iwasa, K. Tanoue, T. Mitani, A. Izuoka, T. Sugawara, T. Yagi, *Chem. Commun.*, 1998, 1411; D. Sun, C.A. Reed, *Chem. Commun.*, 2000, 2391.
- 3 K. Tanaka, D. Fujimoto, T. Oeser, H. Irngartinger, F. Toda, *Chem. Commun.*, 2000, 413; K. Tanaka, D. Fujimoto, A. Altreuther, T. Oeser, H. Irngartinger, F. Toda, *J. Chem. Soc.*, *Perkin Trans 2*, 2000, 2115; K. Tanaka, D. Fujimoto, F. Toda, *Tetrahedron Lett.*, 2000, 41, 6095.